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1 Introduction

The main focus of this project was to better understand prime numbers. We
did this by first examining the Prime Number Theorem (PNT).

Definition 1.1. The Prime Number Theorem states that the prime counting function
π(x) asymptotically approaches x

logx

Since the PNT makes an asymptotic statement, it required a rigorous un-
derstanding of limits, which we accomplished to an extent by studying the
ε − δ definition of limits. However, we realized that it would be difficult to
fully understand this definition of limits with enough time to study the primes,
so we explored other ways of understanding the PNT. Another way we tried
to understand the PNT was to visualize it. The standard visualization of the
PNT showed us important details of primes, such as the fact that there are in-
finitely many of them and that they become less frequent, since the density of
the primes is asymptotic to 1

logx . Most importantly, it also showed us that the
ratio of π(x) to x

logx converges very slowly.
Through our research on the Prime Number Theorem, we expanded our

perspective on the topic and decided we wanted to understand primes from
another perspective. We realized that the PNT primarily told us about the
“density” of primes among the natural numbers, but less about the “distribu-
tion”, namely where primes are located in relation to each other. We sought to
investigate where these primes were located in more detail, leading us to using
a probabilistic method of analysis.

2 Probabilistic Analysis

The tools of analytic number theory gave rise to the PNT. However, the PNT
only makes a statement about the density about the primes. Our second goal
is to find the primes more precisely. As such, we examine the prime gaps:

Definition 2.1. Prime gap: the nth prime gap is the difference between the n+ 1st
and nth primes. Denote γ(n) to be the nth prime gap: γ(n) = pn+1 − pn.
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To perform statistical analysis on γ, we require a data set. Hence, let Dn =
{γ(1),γ(2), . . . γ(n)} be a data set. Natural parameters of Dn to examine are its
mean and variance. As a single number such as a mean or variance is not very
illustrative of the nature of γ, we define mean and variance functions α and β.

Definition 2.2. Let α(n) = 1
n

∑n
i=1 γ(i) represent the cumulative mean of the first

n prime gaps. Similarly, let β(n) = 1
n

∑n
i=1(α(n)−γ(i))

2 represent the cumulative
variance of the first n prime gaps.

As seen in figures 2 and 3, there is striking regularity in α and β. To see if the
trend was unusual, we applied the functions to other data sets. For instance,
figure 4 shows the result when α is applied to data from the stock market. No
obvious trend emerged.

Given the regularity in the mean and variance plots for the prime gap data,
we performed least-squares regression on α and βwith the following model:

a log(1+n)c + b.

The results are shown in figures 5 and 6.
Note that while the regression model does model the data very well and

the residuals seem to approach 0, regression was performed on a finite data
set. However, we make a conjecture based on this evidence.

Conjecture 2.1. α(n) ∼ a1 log(1+n)c1 + b1 and β(n) ∼ a2 log(1+n)c2 + b2.

While we cannot conclude that α and β are logarithmic, we can make a
statement about the coefficients of regression if we suppose they are.

Theorem 2.1. If functions f(n) and an+ b are asymptotic (with a,b > 0), then the
coefficients of regression on the points (i, f(i)) for i = 1, 2, . . . ,n approach the true
parameters as n→ ∞ :

f ∼ an+ b→ a = lim
n→∞an and b = lim

n→∞bn
where an and bn are the coefficients of regression on the first n points.

As a direct consequence of 2.1, we know that by performing regression on
αwith more and more points, the coefficients of regression an,bn, cn will con-
verge to the true parameters.

3 Approximations For Primes

From the definition of γ(n) (definition 2.1), we know that pn+1 = pn + γ(n).
Since α(n) is the expected gap i.e. γ(n) (if we assume all gaps are equally
likely), we have pn+1 ≈ pn + α(n). Hence, we take p̂n+1 = pn + α(n) to be
an approximation of the nth prime.

As seen in figure 7 the predictions for pn are accurate. The histogram of the
errors |pn − p̂n| shows that the errors are concentrated on the smaller side and
the magnitude of the errors themselves are small.
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moment

n

1 2 3 4 5
103 0.9754 1.8371 2.5144 3.1186 3.8459
105 1.0001 2.0620 3.2025 4.2306 4.9009
107 0.9473 1.9795 2.9967 3.9405 4.8066

Table 1: For different values of n, we calculate the coefficient cwhen fitting the
first five moments.

A crucial consequence of theorem 2.1 is that by performing regression once
on a very large number of points, we obtain very accurate approximations for
a,b, c. After such a computation, we may use an log(1+n)cn + bn in place of
α to speed up computation while retaining the same level of accuracy.

4 Future Work

The research we have conducted gives rise to many new questions and ideas
to be followed.

The first includes proving (or disproving) that α does actually follow a log-
arithmic model. If it does, then subsequent work may establish statements re-
garding bounds on the error of our predictions and studying the implications
on computation times for finding primes.

We made interesting observation we made when fitting the model a log(1+
n)c+b to α and β. It seemed that the coefficient cwas approaching 1 as n grew
larger for α, and approached 2 when fitting β. Note that the first moment of a
random variable is simply the mean, and the second moment is related to the
variance (Var(X) = E[X2]−E[X]2.) From this, we have the following conjecture:

Conjecture 4.1. Define a kth moment function µk(n) = 1
n

∑n
i=1 γ(i)

k, where n is
the number of data points. Then the coefficient c when performing regression with the
model a log(1+n)c + b on µk(n) will approach k as n→ ∞.

We have already computed approximations for c on samples of n. 1 shows
our current results.

Another area of work includes formalizing the notion of weighted least-
squares regression for asymptotics. It may be the case that a weighted regres-
sion may improve the approximations for pn for particular choices of weight
functions. Formalizing the implications of weighted regression, including choices
for weight functions, may be studied in the future.

A Proof of Theorem 2.1

Recall theorem 2.1: ”If functions f(n) and an+ b are asymptotic (with a,b >
0), then the coefficients of regression on the points (i, f(i)) for i = 1, 2, . . . ,n
approach the true parameters as n→ ∞ :
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f ∼ an+ b→ a = lim
n→∞an and b = lim

n→∞bn
where an and bn are the coefficients of regression on the first n points.”

Proof. In order to prove a statement about the coefficients of least-squares re-
gression, we must first derive the coefficients.

Lemma A.1. In linear least-squares regression, the coefficients a and b of ŷ = ax+b
that minimize the sum of the squared residuals are

a =

(
n∑

i=1

xi

)(
n∑

i=1

yi

)
−n

n∑
i=1

xiyi(
n∑

i=1

xi

)2

−n
n∑

i=1

x2i

b =

n∑
i=1

yi − a
n∑

i=1

xi

n

where n is the number of points.

Proof. Define L(a,b) to be the function representing the sum of the squared
residuals:

∑
(yi − ŷ)

2. The coefficients from least-squares regression are those
that minimize L. In order to find the coefficients that minimize L, we set the
partial derivatives of Lwith respect to a and b to 0 and solve for a and b..

∂

∂a
L =

∑ ∂

∂a
(yi − axi − b)

2 =
∑

2(yi − axi − b) ·−xi (1)

∂

∂b
L =

∑ ∂

∂b
(yi − axi − b)

2 =
∑

2(yi − axi − b) ·−1 (2)

We set equations (1) and (2) equal to 0 and solve for a and b.

n∑
i=1

(yi − axi − b) · xi = 0 (3)

n∑
i=1

(yi − axi − b) = 0. (4)

We solve for b in terms of a in equation (4):∑
yi − a

∑
xi − bn = 0

b =

∑
yi − a

∑
xi

n
.
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We solve for a by substituting
∑

yi−a
∑

xi
n for b in equation (3):

∑
x2i +

∑
yi − a

∑
xi

n

∑
xi =

∑
xiyi

a
∑

x2i +

∑
xi

∑
yi − a (

∑
xi)

2

n
=

∑
xiyi

an
∑

x2i +
∑

xi
∑

yi − a
(∑

xi

)2
= n

∑
xiyi

an
∑

x2i +
∑

xi
∑

yi − a
(∑

xi

)2
= n

∑
xiyi

a

((∑
xi

)2
−n

∑
x2i

)
=

∑
xi

∑
yi −n

∑
xiyi

a =

∑
xi

∑
yi −n

∑
xiyi

(
∑
xi)

2 −n
∑
x2i

.

Thus the coefficients that minimize the sum of squared residuals are as de-
sired.

Lemma A.2. If f(n) ∼ an+ b (with a,b > 0) then
n∑

i=1

f(i) ∼
n∑

i=1

an+ b.

Proof. The Stolz-Cesaro theorem states for infinite sequences of real numbers
{an}

∞
n=1 and {bn}

∞
n=1 > 0with

∑
bn = ∞, if lim

n→∞ an
bn

= L, for a finite value of

L, then lim
n→∞

∑
an∑
bn

= L.

Suppose f(n) ∼ an+ b. Let {an} to be the sequence defined by f(i), and let
{bn} to be the sequence defined by ai+ b for i = 1, 2, . . . ,n. The summation of
bn must diverge, since a > 0, by assumption. We have f(n) ∼ an+ b which
means lim

n→∞ f(n)
an+b = 1, by the definition of an asymptotic. Since 1 is finite and

a,b > 0, we may apply the Stolz-Cesaro theorem to get lim
n→∞

n∑
i=1

f(i)

n∑
i=1

(ai+b)
= 1,

meaning
n∑

i=1

f(i) ∼
n∑

i=1

(ai+ b), by the definition of an asymptotic. Hence the

lemma.

Lemma A.3. If f(n) ∼ an+ b (with a > 0), then
∑n

i=1 i(ai+ b) ∼
∑n

i=1 if(i).

Proof. Similar to the proof of lemma A.2, we use the Stolz-Cesaro theorem.
Suppose f(n) ∼ an+ b. Let {an} to be the sequence defined by if(i), and let

{bn} to be the sequence defined by i(ai+ b) for i = 1, 2, . . . ,n. The summation
of bn must diverge, since a > 0, by assumption. We have f(n) ∼ an + b

which means lim
n→∞ nf(n)

n(an+b)
=

f(n)
an+b = 1, by the definition of an asymptotic.

Since 1 is finite and a,b > 0, we may apply the Stolz-Cesaro theorem to get
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lim
n→∞

n∑
i=1

if(i)

n∑
i=1

i(ai+b)
= 1, meaning

n∑
i=1

if(i) ∼
n∑

i=1

i(ai+ b), by the definition of an

asymptotic. Hence the lemma.

We first show that a = liman, where an is the coefficient of regression on
the points (i, f(i)), for i = 1, 2, . . . ,n. Note that xi = i for all i. By lemma A.1
we have

an =

(
n∑

i=1

xi

)(
n∑

i=1

f(xi)

)
−n

(
n∑

i=1

xi · f(xi)
)

(
n∑

i=1

xi

)2

−n
n∑

i=1

x2i

(5)

lim
n→∞an = lim

n→∞
(

n∑
i=1

i

)(
n∑

i=1

f(i)

)
−n

(
n∑

i=1

if(i)

)
(

n∑
i=1

i

)2

−n
n∑

i=1

i2

. (6)

By the linearity of the limit, we can rewrite equation (6) as

=

lim
n→∞

(
n∑

i=1

i

)(
n∑

i=1

f(i)

)
− lim

n→∞n
(

n∑
i=1

if(i)

)
lim

n→∞
(

n∑
i=1

i

)2

−n
n∑

i=1

i2

. (7)

We may multiply by 1 in the numerator without changing the equality.

=

lim
n→∞

(
n∑

i=1

i

)(
n∑

i=1

f(i)

)
·

n∑
i=1

ai+b

n∑
i=1

ai+b
− lim

n→∞n
(

n∑
i=1

if(i)

)
·

n∑
i=1

i(ai+b)

n∑
i=1

i(ai+b)

lim
n→∞

(
n∑

i=1

i

)2

−n
n∑

i=1

i2

(8)

=

lim
n→∞

(
n∑

i=1

i

)(
n∑

i=1

ai+ b)

)
·

n∑
i=1

f(i)

n∑
i=1

ai+b
− lim

n→∞n
(

n∑
i=1

i(ai+ b)

)
·

n∑
i=1

if(i)

n∑
i=1

i(ai+b)

lim
n→∞

(
n∑

i=1

i

)2

−n
n∑

i=1

i2

(9)

By lemmas A.2 and A.3, we know lim
n→∞

n∑
f(i)

n∑
(ai+b)

= 1 and lim
n→∞

n∑
if(i)

n∑
i(ai+b)

=

1. Therefore,
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=

lim
n→∞

(
n∑

i=1

i

)(
n∑

i=1

ai+ b)

)
− lim

n→∞n
(

n∑
i=1

i(ai+ b)

)
lim

n→∞
(

n∑
i=1

i

)2

−n
n∑

i=1

i2

. (10)

We pull the limits out and simplify.

= lim
n→∞

(
n∑

i=1

i

)(
n∑

i=1

ai+
n∑

i=1

b

)
−n

(
n∑

i=1

ai2 + bi

)
(

n∑
i=1

i

)2

−n
n∑

i=1

i2

(11)

= lim
n→∞

a

(
n∑

i=1

i

)2

+ bn

(
n∑

i=1

i

)
−na

(
n∑

i=1

i2
)
− bn

n∑
i=1

i(
n∑

i=1

i

)2

−n
n∑

i=1

i2

(12)

= lim
n→∞

a

(
n∑

i=1

i

)2

−na

(
n∑

i=1

i2
)

(
n∑

i=1

i

)2

−n
n∑

i=1

i2

(13)

= lim
n→∞a

(
n∑

i=1

i

)2

−n

(
n∑

i=1

i2
)

(
n∑

i=1

i

)2

−n
n∑

i=1

i2

(14)

= a. (15)

In a similar way, we evaluate lim
n→∞bn. Again, note that xi = i, for all i.

From lemma A.1 we have

bn =
1

n

n∑
i=1

f(xi) −
an

n

n∑
i=1

xi (16)

lim
n→∞ = lim

n→∞ 1

n

n∑
i=1

f(i) −
an

n

n∑
i=1

i. (17)

By the linearity of the limit, we have

= lim
n→∞ 1

n

n∑
i=1

f(i) − lim
n→∞an · lim

n→∞ 1

n

n∑
i=1

i. (18)
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By (15), we know lim
n→∞an = a. Therefore,

= lim
n→∞ 1

n

n∑
i=1

f(i) − lim
n→∞ a

n

n∑
i=1

i. (19)

We may multiply by 1without changing the equality.

= lim
n→∞ 1

n

n∑
i=1

f(i) ·

n∑
i=1

ai+ b

n∑
i=1

ai+ b

− lim
n→∞ a

n

n∑
i=1

i (20)

= lim
n→∞ 1

n

n∑
i=1

(ai+ b) ·

n∑
i=1

f(i)

n∑
i=1

ai+ b

− lim
n→∞ a

n

n∑
i=1

i (21)

We pull out the limit and simplify.

= lim
n→∞ 1

n

n∑
i=1

(axi + b) −
a

n

n∑
i=1

xi (22)

= lim
n→∞ 1

n

(
a

n∑
i=1

xi + bn

)
−
a

n

n∑
i=1

xi (23)

= lim
n→∞ a

n

(
n∑

i=1

xi

)
+ b−

a

n

n∑
i=1

xi (24)

= b. (25)

Therefore, lim
n→∞an = a and lim

n→∞bn = b.
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Figure 1: The first ten million prime gaps are plotted.

Figure 2: α(n) is plotted up to n = 107. A clear, roughly logarithmic curve
appears.
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Figure 3: β(n) is plotted up to n = 107. Again, a clear, roughly logarithmic
curve appears.

Figure 4: Average value of TNX stock prices
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Figure 5: On the left, α(n) is plotted, along with the regression model obtained
from ten million data points. On the right, their ratio is plotted and seems to
converge to 1.

Figure 6: On the left, β(n) is plotted, along with the regression model obtained
from ten million data points. On the right, their ratio is plotted and seems to
converge to 1.
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Figure 7: A Histogram of the first ten million errors |pn − p̂n| is shown. Note
the magnitude of the errors is small, and the errors are skewed towards the
smaller side.
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